Statistics > Machine Learning
[Submitted on 10 Sep 2021 (v1), last revised 17 Mar 2022 (this version, v2)]
Title:Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
View PDFAbstract:We introduce the model selection problem in pure exploration linear bandits, where the learner needs to adapt to the instance-dependent complexity measure of the smallest hypothesis class containing the true model. We design algorithms in both fixed confidence and fixed budget settings with near instance optimal guarantees. The core of our algorithms is a new optimization problem based on experimental design that leverages the geometry of the action set to identify a near-optimal hypothesis class. Our fixed budget algorithm is developed based on a novel selection-validation procedure, which provides a new way to study the understudied fixed budget setting (even without the added challenge of model selection). We adapt our algorithms, in both fixed confidence and fixed budget settings, to problems with model misspecification.
Submission history
From: Yinglun Zhu [view email][v1] Fri, 10 Sep 2021 22:56:58 UTC (34 KB)
[v2] Thu, 17 Mar 2022 08:35:33 UTC (1,407 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.