Physics > Geophysics
[Submitted on 11 Sep 2021]
Title:MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning
View PDFAbstract:Among the biggest challenges we face in utilizing neural networks trained on waveform data (i.e., seismic, electromagnetic, or ultrasound) is its application to real data. The requirement for accurate labels forces us to develop solutions using synthetic data, where labels are readily available. However, synthetic data often do not capture the reality of the field/real experiment, and we end up with poor performance of the trained neural network (NN) at the inference stage. We describe a novel approach to enhance supervised training on synthetic data with real data features (domain adaptation). Specifically, for tasks in which the absolute values of the vertical axis (time or depth) of the input data are not crucial, like classification, or can be corrected afterward, like velocity model building using a well-log, we suggest a series of linear operations on the input so the training and application data have similar distributions. This is accomplished by applying two operations on the input data to the NN model: 1) The crosscorrelation of the input data (i.e., shot gather, seismic image, etc.) with a fixed reference trace from the same dataset. 2) The convolution of the resulting data with the mean (or a random sample) of the autocorrelated data from another domain. In the training stage, the input data are from the synthetic domain and the auto-correlated data are from the real domain, and random samples from real data are drawn at every training epoch. In the inference/application stage, the input data are from the real subset domain and the mean of the autocorrelated sections are from the synthetic data subset domain. Example applications on passive seismic data for microseismic event source location determination and active seismic data for predicting low frequencies are used to demonstrate the power of this approach in improving the applicability of trained models to real data.
Submission history
From: Oleg Ovcharenko [view email][v1] Sat, 11 Sep 2021 14:43:34 UTC (15,227 KB)
Current browse context:
physics.geo-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.