Quantitative Biology > Populations and Evolution
[Submitted on 11 Sep 2021 (v1), last revised 28 Oct 2021 (this version, v2)]
Title:Modelling the Utility of Group Testing for Public Health Surveillance
View PDFAbstract:In epidemic or pandemic situations, resources for testing the infection status of individuals may be scarce. Although group testing can help to significantly increase testing capabilities, the (repeated) testing of entire populations can exceed the resources of any country. We thus propose an extension of the theory of group testing that takes into account the fact that definitely specifying the infection status of each individual is impossible. Our theory builds on assigning to each individual an infection status (healthy/infected), as well as an associated cost function for erroneous assignments. This cost function is versatile, e.g., it could take into account that false negative assignments are worse than false positive assignments and that false assignments in critical areas, such as health care workers, are more severe than in the general population. Based on this model, we study the optimal use of a limited number of tests to minimize the expected cost. More specifically, we utilize information-theoretic methods to give a lower bound on the expected cost and describe simple strategies that can significantly reduce the expected cost over currently known strategies. A detailed example is provided to illustrate our theory.
Submission history
From: Georg Pichler [view email][v1] Sat, 11 Sep 2021 21:31:56 UTC (126 KB)
[v2] Thu, 28 Oct 2021 10:58:10 UTC (123 KB)
Current browse context:
q-bio.PE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.