Electrical Engineering and Systems Science > Signal Processing
[Submitted on 12 Sep 2021 (v1), last revised 1 Nov 2021 (this version, v2)]
Title:Graph Attention Network Based Single-Pixel Compressive Direction of Arrival Estimation
View PDFAbstract:In this paper, we present a single-pixel compressive direction of arrival (DoA) estimation technique leveraging a graph attention network (GAT)-based deep-learning framework. The physical layer compression is achieved using a coded-aperture technique, probing the spectrum of far-field sources that are incident on the aperture using a set of spatio-temporally incoherent modes. This information is then encoded and compressed into the channel of the coded-aperture. The coded-aperture is based on a metasurface antenna design and it works as a receiver, exhibiting a single-channel and replacing the conventional multichannel raster scan-based solutions for DoA estimation. The GAT network enables the compressive DoA estimation framework to learn the DoA information directly from the measurements acquired using the coded-aperture. This step eliminates the need for an additional reconstruction step and significantly simplifies the processing layer to achieve DoA estimation. We show that the presented GAT integrated single-pixel radar framework can retrieve high fidelity DoA information even under relatively low signal-to-noise ratio (SNR) levels.
Submission history
From: Kürşat Tekbıyık [view email][v1] Sun, 12 Sep 2021 09:19:49 UTC (1,698 KB)
[v2] Mon, 1 Nov 2021 19:47:22 UTC (1,514 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.