Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Sep 2021]
Title:LEA-Net: Layer-wise External Attention Network for Efficient Color Anomaly Detection
View PDFAbstract:The utilization of prior knowledge about anomalies is an essential issue for anomaly detections. Recently, the visual attention mechanism has become a promising way to improve the performance of CNNs for some computer vision tasks. In this paper, we propose a novel model called Layer-wise External Attention Network (LEA-Net) for efficient image anomaly detection. The core idea relies on the integration of unsupervised and supervised anomaly detectors via the visual attention mechanism. Our strategy is as follows: (i) Prior knowledge about anomalies is represented as the anomaly map generated by unsupervised learning of normal instances, (ii) The anomaly map is translated to an attention map by the external network, (iii) The attention map is then incorporated into intermediate layers of the anomaly detection network. Notably, this layer-wise external attention can be applied to any CNN model in an end-to-end training manner. For a pilot study, we validate LEA-Net on color anomaly detection tasks. Through extensive experiments on PlantVillage, MVTec AD, and Cloud datasets, we demonstrate that the proposed layer-wise visual attention mechanism consistently boosts anomaly detection performances of an existing CNN model, even on imbalanced datasets. Moreover, we show that our attention mechanism successfully boosts the performance of several CNN models.
Submission history
From: Ryoya Katafuchi Master [view email][v1] Sun, 12 Sep 2021 11:38:04 UTC (9,044 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.