Electrical Engineering and Systems Science > Signal Processing
[Submitted on 12 Sep 2021 (v1), last revised 15 Nov 2022 (this version, v3)]
Title:Link Scheduling using Graph Neural Networks
View PDFAbstract:Efficient scheduling of transmissions is a key problem in wireless networks. The main challenge stems from the fact that optimal link scheduling involves solving a maximum weighted independent set (MWIS) problem, which is known to be NP-hard. In practical schedulers, centralized and distributed greedy heuristics are commonly used to approximately solve the MWIS problem. However, most of these greedy heuristics ignore important topological information of the wireless network. To overcome this limitation, we propose fast heuristics based on graph convolutional networks (GCNs) that can be implemented in centralized and distributed manners. Our centralized heuristic is based on tree search guided by a GCN and 1-step rollout. In our distributed MWIS solver, a GCN generates topology-aware node embeddings that are combined with per-link utilities before invoking a distributed greedy solver. Moreover, a novel reinforcement learning scheme is developed to train the GCN in a non-differentiable pipeline. Test results on medium-sized wireless networks show that our centralized heuristic can reach a near-optimal solution quickly, and our distributed heuristic based on a shallow GCN can reduce by nearly half the suboptimality gap of the distributed greedy solver with minimal increase in complexity. The proposed schedulers also exhibit good generalizability across graph and weight distributions.
Submission history
From: Zhongyuan Zhao [view email][v1] Sun, 12 Sep 2021 15:19:59 UTC (2,080 KB)
[v2] Wed, 18 May 2022 14:35:18 UTC (2,469 KB)
[v3] Tue, 15 Nov 2022 02:22:10 UTC (2,188 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.