Computer Science > Machine Learning
[Submitted on 12 Sep 2021]
Title:CoG: a Two-View Co-training Framework for Defending Adversarial Attacks on Graph
View PDFAbstract:Graph neural networks exhibit remarkable performance in graph data analysis. However, the robustness of GNN models remains a challenge. As a result, they are not reliable enough to be deployed in critical applications. Recent studies demonstrate that GNNs could be easily fooled with adversarial perturbations, especially structural perturbations. Such vulnerability is attributed to the excessive dependence on the structure information to make predictions. To achieve better robustness, it is desirable to build the prediction of GNNs with more comprehensive features. Graph data, in most cases, has two views of information, namely structure information and feature information. In this paper, we propose CoG, a simple yet effective co-training framework to combine these two views for the purpose of robustness. CoG trains sub-models from the feature view and the structure view independently and allows them to distill knowledge from each other by adding their most confident unlabeled data into the training set. The orthogonality of these two views diversifies the sub-models, thus enhancing the robustness of their ensemble. We evaluate our framework on three popular datasets, and results show that CoG significantly improves the robustness of graph models against adversarial attacks without sacrificing their performance on clean data. We also show that CoG still achieves good robustness when both node features and graph structures are perturbed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.