Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Sep 2021 (v1), last revised 16 Mar 2022 (this version, v3)]
Title:SphereFace Revived: Unifying Hyperspherical Face Recognition
View PDFAbstract:This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end, hyperspherical face recognition, as a promising line of research, has attracted increasing attention and gradually become a major focus in face recognition research. As one of the earliest works in hyperspherical face recognition, SphereFace explicitly proposed to learn face embeddings with large inter-class angular margin. However, SphereFace still suffers from severe training instability which limits its application in practice. In order to address this problem, we introduce a unified framework to understand large angular margin in hyperspherical face recognition. Under this framework, we extend the study of SphereFace and propose an improved variant with substantially better training stability -- SphereFace-R. Specifically, we propose two novel ways to implement the multiplicative margin, and study SphereFace-R under three different feature normalization schemes (no feature normalization, hard feature normalization and soft feature normalization). We also propose an implementation strategy -- "characteristic gradient detachment" -- to stabilize training. Extensive experiments on SphereFace-R show that it is consistently better than or competitive with state-of-the-art methods.
Submission history
From: Weiyang Liu [view email][v1] Sun, 12 Sep 2021 17:07:54 UTC (1,363 KB)
[v2] Tue, 8 Mar 2022 17:12:22 UTC (3,566 KB)
[v3] Wed, 16 Mar 2022 07:12:30 UTC (4,125 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.