Computer Science > Machine Learning
[Submitted on 12 Sep 2021 (v1), last revised 5 Jul 2022 (this version, v3)]
Title:On the Efficiency of Subclass Knowledge Distillation in Classification Tasks
View PDFAbstract:This work introduces a novel knowledge distillation framework for classification tasks where information on existing subclasses is available and taken into consideration. In classification tasks with a small number of classes or binary detection (two classes) the amount of information transferred from the teacher to the student network is restricted, thus limiting the utility of knowledge distillation. Performance can be improved by leveraging information about possible subclasses within the available classes in the classification task. To that end, we propose the so-called Subclass Knowledge Distillation (SKD) framework, which is the process of transferring the subclasses' prediction knowledge from a large teacher model into a smaller student one. Through SKD, additional meaningful information which is not in the teacher's class logits but exists in subclasses (e.g., similarities inside classes) will be conveyed to the student and boost its performance. Mathematically, we measure how many extra information bits the teacher can provide for the student via SKD framework. The framework developed is evaluated in clinical application, namely colorectal polyp binary classification. In this application, clinician-provided annotations are used to define subclasses based on the annotation label's variability in a curriculum style of learning. A lightweight, low complexity student trained with the proposed framework achieves an F1-score of 85.05%, an improvement of 2.14% and 1.49% gain over the student that trains without and with conventional knowledge distillation, respectively. These results show that the extra subclasses' knowledge (i.e., 0.4656 label bits per training sample in our experiment) can provide more information about the teacher generalization, and therefore SKD can benefit from using more information to increase the student performance.
Submission history
From: Ahmad Sajedi [view email][v1] Sun, 12 Sep 2021 19:04:44 UTC (5,894 KB)
[v2] Sun, 20 Feb 2022 18:13:10 UTC (1 KB) (withdrawn)
[v3] Tue, 5 Jul 2022 16:36:15 UTC (5,894 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.