Condensed Matter > Materials Science
[Submitted on 12 Sep 2021]
Title:Neural network based order parameter for phase transitions and its applications in high-entropy alloys
View PDFAbstract:Phase transition is one of the most important phenomena in nature and plays a central role in materials design. All phase transitions are characterized by suitable order parameters, including the order-disorder phase transition. However, finding a representative order parameter for complex systems is nontrivial, such as for high-entropy alloys. Given variational autoencoder's (VAE) strength of reducing high dimensional data into few principal components, here we coin a new concept of "VAE order parameter". We propose that the Manhattan distance in the VAE latent space can serve as a generic order parameter for order-disorder phase transitions. The physical properties of the order parameter are quantitatively interpreted and demonstrated by multiple refractory high-entropy alloys. Assisted by it, a generally applicable alloy design concept is proposed by mimicking the nature mixing of elements. Our physically interpretable "VAE order parameter" lays the foundation for the understanding of and alloy design by chemical ordering.
Current browse context:
cond-mat.mtrl-sci
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.