Computer Science > Robotics
[Submitted on 12 Sep 2021 (v1), last revised 4 Mar 2022 (this version, v2)]
Title:Direct Random Search for Fine Tuning of Deep Reinforcement Learning Policies
View PDFAbstract:Researchers have demonstrated that Deep Reinforcement Learning (DRL) is a powerful tool for finding policies that perform well on complex robotic systems. However, these policies are often unpredictable and can induce highly variable behavior when evaluated with only slightly different initial conditions. Training considerations constrain DRL algorithm designs in that most algorithms must use stochastic policies during training. The resulting policy used during deployment, however, can and frequently is a deterministic one that uses the Maximum Likelihood Action (MLA) at each step. In this work, we show that a direct random search is very effective at fine-tuning DRL policies by directly optimizing them using deterministic rollouts. We illustrate this across a large collection of reinforcement learning environments, using a wide variety of policies obtained from different algorithms. Our results show that this method yields more consistent and higher performing agents on the environments we tested. Furthermore, we demonstrate how this method can be used to extend our previous work on shrinking the dimensionality of the reachable state space of closed-loop systems run under Deep Neural Network (DNN) policies.
Submission history
From: Sean Gillen [view email][v1] Sun, 12 Sep 2021 20:12:46 UTC (1,366 KB)
[v2] Fri, 4 Mar 2022 19:27:16 UTC (1,367 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.