Computer Science > Cryptography and Security
[Submitted on 13 Sep 2021]
Title:Source Inference Attacks in Federated Learning
View PDFAbstract:Federated learning (FL) has emerged as a promising privacy-aware paradigm that allows multiple clients to jointly train a model without sharing their private data. Recently, many studies have shown that FL is vulnerable to membership inference attacks (MIAs) that can distinguish the training members of the given model from the non-members. However, existing MIAs ignore the source of a training member, i.e., the information of which client owns the training member, while it is essential to explore source privacy in FL beyond membership privacy of examples from all clients. The leakage of source information can lead to severe privacy issues. For example, identification of the hospital contributing to the training of an FL model for COVID-19 pandemic can render the owner of a data record from this hospital more prone to discrimination if the hospital is in a high risk region. In this paper, we propose a new inference attack called source inference attack (SIA), which can derive an optimal estimation of the source of a training member. Specifically, we innovatively adopt the Bayesian perspective to demonstrate that an honest-but-curious server can launch an SIA to steal non-trivial source information of the training members without violating the FL protocol. The server leverages the prediction loss of local models on the training members to achieve the attack effectively and non-intrusively. We conduct extensive experiments on one synthetic and five real datasets to evaluate the key factors in an SIA, and the results show the efficacy of the proposed source inference attack.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.