Computer Science > Information Retrieval
[Submitted on 13 Sep 2021]
Title:An Adaptive Boosting Technique to Mitigate Popularity Bias in Recommender System
View PDFAbstract:The observed ratings in most recommender systems are subjected to popularity bias and are thus not randomly missing. Due to this, only a few popular items are recommended, and a vast number of non-popular items are hardly recommended. Not suggesting the non-popular items lead to fewer products dominating the market and thus offering fewer opportunities for creativity and innovation. In the literature, several fair algorithms have been proposed which mainly focused on improving the accuracy of the recommendation system. However, a typical accuracy measure is biased towards popular items, i.e., it promotes better accuracy for popular items compared to non-popular items. This paper considers a metric that measures the popularity bias as the difference in error on popular items and non-popular items. Motivated by the fair boosting algorithm on classification, we propose an algorithm that reduces the popularity bias present in the data while maintaining accuracy within acceptable limits. The main idea of our algorithm is that it lifts the weights of the non-popular items, which are generally underrepresented in the data. With the help of comprehensive experiments on real-world datasets, we show that our proposed algorithm outperforms the existing algorithms on the proposed popularity bias metric.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.