Computer Science > Machine Learning
[Submitted on 13 Sep 2021 (v1), last revised 15 Sep 2021 (this version, v2)]
Title:Exploiting Heterogeneity in Robust Federated Best-Arm Identification
View PDFAbstract:We study a federated variant of the best-arm identification problem in stochastic multi-armed bandits: a set of clients, each of whom can sample only a subset of the arms, collaborate via a server to identify the best arm (i.e., the arm with the highest mean reward) with prescribed confidence. For this problem, we propose Fed-SEL, a simple communication-efficient algorithm that builds on successive elimination techniques and involves local sampling steps at the clients. To study the performance of Fed-SEL, we introduce a notion of arm-heterogeneity that captures the level of dissimilarity between distributions of arms corresponding to different clients. Interestingly, our analysis reveals the benefits of arm-heterogeneity in reducing both the sample- and communication-complexity of Fed-SEL. As a special case of our analysis, we show that for certain heterogeneous problem instances, Fed-SEL outputs the best-arm after just one round of communication. Our findings have the following key implication: unlike federated supervised learning where recent work has shown that statistical heterogeneity can lead to poor performance, one can provably reap the benefits of both local computation and heterogeneity for federated best-arm identification. As our final contribution, we develop variants of Fed-SEL, both for federated and peer-to-peer settings, that are robust to the presence of Byzantine clients, and hence suitable for deployment in harsh, adversarial environments.
Submission history
From: Aritra Mitra [view email][v1] Mon, 13 Sep 2021 04:22:21 UTC (289 KB)
[v2] Wed, 15 Sep 2021 15:24:33 UTC (289 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.