Computer Science > Information Theory
[Submitted on 13 Sep 2021]
Title:Covert queueing problem with a Markovian statistic
View PDFAbstract:Based on the covert communication framework, we consider a covert queueing problem that has a Markovian statistic. Willie jobs arrive according to a Poisson process and require service from server Bob. Bob does not have a queue for jobs to wait and hence when the server is busy, arriving Willie jobs are lost. Willie and Bob enter a contract under which Bob should only serve Willie jobs. As part of the usage statistic, for a sequence of N consecutive jobs that arrived, Bob informs Willie whether each job was served or lost (this is the Markovian statistic). Bob is assumed to be violating the contract and admitting non-Willie (Nillie) jobs according to a Poisson process. For such a setting, we identify the hypothesis testing to be performed (given the Markovian data) by Willie to detect the presence or absence of Nillie jobs. We also characterize the upper bound on arrival rate of Nillie jobs such that the error in the hypothesis testing of Willie is arbitrarily large, ensuring covertness in admitting Nillie jobs.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.