Computer Science > Machine Learning
[Submitted on 13 Sep 2021]
Title:Region Invariant Normalizing Flows for Mobility Transfer
View PDFAbstract:There exists a high variability in mobility data volumes across different regions, which deteriorates the performance of spatial recommender systems that rely on region-specific data. In this paper, we propose a novel transfer learning framework called REFORMD, for continuous-time location prediction for regions with sparse checkin data. Specifically, we model user-specific checkin-sequences in a region using a marked temporal point process (MTPP) with normalizing flows to learn the inter-checkin time and geo-distributions. Later, we transfer the model parameters of spatial and temporal flows trained on a data-rich origin region for the next check-in and time prediction in a target region with scarce checkin data. We capture the evolving region-specific checkin dynamics for MTPP and spatial-temporal flows by maximizing the joint likelihood of next checkin with three channels (1) checkin-category prediction, (2) checkin-time prediction, and (3) travel distance prediction. Extensive experiments on different user mobility datasets across the U.S. and Japan show that our model significantly outperforms state-of-the-art methods for modeling continuous-time sequences. Moreover, we also show that REFORMD can be easily adapted for product recommendations i.e., sequences without any spatial component.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.