Quantitative Biology > Neurons and Cognition
[Submitted on 26 Aug 2021]
Title:Online Optimization of Stimulation Speed in an Auditory Brain-Computer Interface under Time Constraints
View PDFAbstract:The decoding of brain signals recorded via, e.g., an electroencephalogram, using machine learning is key to brain-computer interfaces (BCIs). Stimulation parameters or other experimental settings of the BCI protocol typically are chosen according to the literature. The decoding performance directly depends on the choice of parameters, as they influence the elicited brain signals and optimal parameters are subject-dependent. Thus a fast and automated selection procedure for experimental parameters could greatly improve the usability of BCIs.
We evaluate a standalone random search and a combined Bayesian optimization with random search in a closed-loop auditory event-related potential protocol. We aimed at finding the individually best stimulation speed -- also known as stimulus onset asynchrony (SOA) -- that maximizes the classification performance of a regularized linear discriminant analysis. To make the Bayesian optimization feasible under noise and the time pressure posed by an online BCI experiment, we first used offline simulations to initialize and constrain the internal optimization model. Then we evaluated our approach online with 13 healthy subjects.
We could show that for 8 out of 13 subjects, the proposed approach using Bayesian optimization succeeded to select the individually optimal SOA out of multiple evaluated SOA values. Our data suggests, however, that subjects were influenced to very different degrees by the SOA parameter. This makes the automatic parameter selection infeasible for subjects where the influence is limited.
Our work proposes an approach to exploit the benefits of individualized experimental protocols and evaluated it in an auditory BCI. When applied to other experimental parameters our approach could enhance the usability of BCI for different target groups -- specifically if an individual disease progress may prevent the use of standard parameters.
Ancillary-file links:
Ancillary files (details):
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.