Computer Science > Information Theory
[Submitted on 13 Sep 2021 (v1), last revised 4 Feb 2022 (this version, v2)]
Title:Minimizing Quantum Renyi Divergences via Mirror Descent with Polyak Step Size
View PDFAbstract:Quantum information quantities play a substantial role in characterizing operational quantities in various quantum information-theoretic problems. We consider numerical computation of four quantum information quantities: Petz-Augustin information, sandwiched Augustin information, conditional sandwiched Renyi entropy and sandwiched Renyi information. To compute these quantities requires minimizing some order-$\alpha$ quantum Renyi divergences over the set of quantum states. Whereas the optimization problems are obviously convex, they violate standard bounded gradient/Hessian conditions in literature, so existing convex optimization methods and their convergence guarantees do not directly apply. In this paper, we propose a new class of convex optimization methods called mirror descent with the Polyak step size. We prove their convergence under a weak condition, showing that they provably converge for minimizing quantum Renyi divergences. Numerical experiment results show that entropic mirror descent with the Polyak step size converges fast in minimizing quantum Renyi divergences.
Submission history
From: Yen-Huan Li [view email][v1] Mon, 13 Sep 2021 15:24:14 UTC (221 KB)
[v2] Fri, 4 Feb 2022 04:10:12 UTC (64 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.