Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Sep 2021 (v1), last revised 7 Feb 2022 (this version, v2)]
Title:Single-stream CNN with Learnable Architecture for Multi-source Remote Sensing Data
View PDFAbstract:In this paper, we propose an efficient and generalizable framework based on deep convolutional neural network (CNN) for multi-source remote sensing data joint classification. While recent methods are mostly based on multi-stream architectures, we use group convolution to construct equivalent network architectures efficiently within a single-stream network. We further adopt and improve dynamic grouping convolution (DGConv) to make group convolution hyperparameters, and thus the overall network architecture, learnable during network training. The proposed method therefore can theoretically adjust any modern CNN models to any multi-source remote sensing data set, and can potentially avoid sub-optimal solutions caused by manually decided architecture hyperparameters. In the experiments, the proposed method is applied to ResNet and UNet, and the adjusted networks are verified on three very diverse benchmark data sets (i.e., Houston2018 data, Berlin data, and MUUFL data). Experimental results demonstrate the effectiveness of the proposed single-stream CNNs, and in particular ResNet18-DGConv improves the state-of-the-art classification overall accuracy (OA) on HS-SAR Berlin data set from $62.23\%$ to $68.21\%$. In the experiments we have two interesting findings. First, using DGConv generally reduces test OA variance. Second, multi-stream is harmful to model performance if imposed to the first few layers, but becomes beneficial if applied to deeper layers. Altogether, the findings imply that multi-stream architecture, instead of being a strictly necessary component in deep learning models for multi-source remote sensing data, essentially plays the role of model regularizer. Our code is publicly available at this https URL. We hope our work can inspire novel research in the future.
Submission history
From: Yi Yang [view email][v1] Mon, 13 Sep 2021 16:10:41 UTC (15,344 KB)
[v2] Mon, 7 Feb 2022 04:49:08 UTC (21,698 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.