Computer Science > Computation and Language
[Submitted on 13 Sep 2021 (v1), last revised 6 Apr 2022 (this version, v3)]
Title:The Grammar-Learning Trajectories of Neural Language Models
View PDFAbstract:The learning trajectories of linguistic phenomena in humans provide insight into linguistic representation, beyond what can be gleaned from inspecting the behavior of an adult speaker. To apply a similar approach to analyze neural language models (NLM), it is first necessary to establish that different models are similar enough in the generalizations they make. In this paper, we show that NLMs with different initialization, architecture, and training data acquire linguistic phenomena in a similar order, despite their different end performance. These findings suggest that there is some mutual inductive bias that underlies these models' learning of linguistic phenomena. Taking inspiration from psycholinguistics, we argue that studying this inductive bias is an opportunity to study the linguistic representation implicit in NLMs.
Leveraging these findings, we compare the relative performance on different phenomena at varying learning stages with simpler reference models. Results suggest that NLMs exhibit consistent "developmental" stages. Moreover, we find the learning trajectory to be approximately one-dimensional: given an NLM with a certain overall performance, it is possible to predict what linguistic generalizations it has already acquired. Initial analysis of these stages presents phenomena clusters (notably morphological ones), whose performance progresses in unison, suggesting a potential link between the generalizations behind them.
Submission history
From: Leshem Choshen [view email][v1] Mon, 13 Sep 2021 16:17:23 UTC (10,680 KB)
[v2] Mon, 7 Mar 2022 11:05:08 UTC (10,614 KB)
[v3] Wed, 6 Apr 2022 12:21:15 UTC (10,618 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.