Computer Science > Cryptography and Security
[Submitted on 13 Sep 2021]
Title:Deep Generative Models to Extend Active Directory Graphs with Honeypot Users
View PDFAbstract:Active Directory (AD) is a crucial element of large organizations, given its central role in managing access to resources. Since AD is used by all users in the organization, it is hard to detect attackers. We propose to generate and place fake users (honeyusers) in AD structures to help detect attacks. However, not any honeyuser will attract attackers. Our method generates honeyusers with a Variational Autoencoder that enriches the AD structure with well-positioned honeyusers. It first learns the embeddings of the original nodes and edges in the AD, then it uses a modified Bidirectional DAG-RNN to encode the parameters of the probability distribution of the latent space of node representations. Finally, it samples nodes from this distribution and uses an MLP to decide where the nodes are connected. The model was evaluated by the similarity of the generated AD with the original, by the positions of the new nodes, by the similarity with GraphRNN and finally by making real intruders attack the generated AD structure to see if they select the honeyusers. Results show that our machine learning model is good enough to generate well-placed honeyusers for existing AD structures so that intruders are lured into them.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.