Computer Science > Computation and Language
[Submitted on 13 Sep 2021]
Title:Multi-Sentence Resampling: A Simple Approach to Alleviate Dataset Length Bias and Beam-Search Degradation
View PDFAbstract:Neural Machine Translation (NMT) is known to suffer from a beam-search problem: after a certain point, increasing beam size causes an overall drop in translation quality. This effect is especially pronounced for long sentences. While much work was done analyzing this phenomenon, primarily for autoregressive NMT models, there is still no consensus on its underlying cause. In this work, we analyze errors that cause major quality degradation with large beams in NMT and Automatic Speech Recognition (ASR). We show that a factor that strongly contributes to the quality degradation with large beams is \textit{dataset length-bias} - \textit{NMT datasets are strongly biased towards short sentences}. To mitigate this issue, we propose a new data augmentation technique -- \textit{Multi-Sentence Resampling (MSR)}. This technique extends the training examples by concatenating several sentences from the original dataset to make a long training example. We demonstrate that MSR significantly reduces degradation with growing beam size and improves final translation quality on the IWSTL$15$ En-Vi, IWSTL$17$ En-Fr, and WMT$14$ En-De datasets.
Submission history
From: Andrey Malinin Dr. [view email][v1] Mon, 13 Sep 2021 18:40:53 UTC (5,056 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.