Computer Science > Machine Learning
[Submitted on 13 Sep 2021]
Title:Automatic Tuning of Tensorflow's CPU Backend using Gradient-Free Optimization Algorithms
View PDFAbstract:Modern deep learning (DL) applications are built using DL libraries and frameworks such as TensorFlow and PyTorch. These frameworks have complex parameters and tuning them to obtain good training and inference performance is challenging for typical users, such as DL developers and data scientists. Manual tuning requires deep knowledge of the user-controllable parameters of DL frameworks as well as the underlying hardware. It is a slow and tedious process, and it typically delivers sub-optimal solutions.
In this paper, we treat the problem of tuning parameters of DL frameworks to improve training and inference performance as a black-box optimization problem. We then investigate applicability and effectiveness of Bayesian optimization (BO), genetic algorithm (GA), and Nelder-Mead simplex (NMS) to tune the parameters of TensorFlow's CPU backend. While prior work has already investigated the use of Nelder-Mead simplex for a similar problem, it does not provide insights into the applicability of other more popular algorithms. Towards that end, we provide a systematic comparative analysis of all three algorithms in tuning TensorFlow's CPU backend on a variety of DL models. Our findings reveal that Bayesian optimization performs the best on the majority of models. There are, however, cases where it does not deliver the best results.
Submission history
From: Niranjan Hasabnis [view email][v1] Mon, 13 Sep 2021 19:10:23 UTC (2,424 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.