Computer Science > Machine Learning
[Submitted on 13 Sep 2021 (v1), last revised 13 Jul 2022 (this version, v3)]
Title:Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach
View PDFAbstract:Reinforcement learning is widely used in applications where one needs to perform sequential decisions while interacting with the environment. The problem becomes more challenging when the decision requirement includes satisfying some safety constraints. The problem is mathematically formulated as constrained Markov decision process (CMDP). In the literature, various algorithms are available to solve CMDP problems in a model-free manner to achieve $\epsilon$-optimal cumulative reward with $\epsilon$ feasible policies. An $\epsilon$-feasible policy implies that it suffers from constraint violation. An important question here is whether we can achieve $\epsilon$-optimal cumulative reward with zero constraint violations or not. To achieve that, we advocate the use of randomized primal-dual approach to solve the CMDP problems and propose a conservative stochastic primal-dual algorithm (CSPDA) which is shown to exhibit $\tilde{\mathcal{O}}\left(1/\epsilon^2\right)$ sample complexity to achieve $\epsilon$-optimal cumulative reward with zero constraint violations. In the prior works, the best available sample complexity for the $\epsilon$-optimal policy with zero constraint violation is $\tilde{\mathcal{O}}\left(1/\epsilon^5\right)$. Hence, the proposed algorithm provides a significant improvement as compared to the state of the art.
Submission history
From: Vaneet Aggarwal [view email][v1] Mon, 13 Sep 2021 21:27:03 UTC (14,335 KB)
[v2] Wed, 16 Feb 2022 04:10:12 UTC (2,885 KB)
[v3] Wed, 13 Jul 2022 20:54:22 UTC (14,901 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.