Computer Science > Databases
[Submitted on 13 Sep 2021 (v1), last revised 3 Oct 2021 (this version, v2)]
Title:ML Based Lineage in Databases
View PDFAbstract:We track the lineage of tuples throughout their database lifetime. That is, we consider a scenario in which tuples (records) that are produced by a query may affect other tuple insertions into the DB, as part of a normal workflow. As time goes on, exact provenance explanations for such tuples become deeply nested, increasingly consuming space, and resulting in decreased clarity and readability. We present a novel approach for approximating lineage tracking, using a Machine Learning (ML) and Natural Language Processing (NLP) technique; namely, word embedding. The basic idea is summarizing (and approximating) the lineage of each tuple via a small set of constant-size vectors (the number of vectors per-tuple is a hyperparameter). Therefore, our solution does not suffer from space complexity blow-up over time, and it "naturally ranks" explanations to the existence of a tuple. We devise an alternative and improved lineage tracking mechanism, that of keeping track of and querying lineage at the column level; thereby, we manage to better distinguish between the provenance features and the textual characteristics of a tuple. We integrate our lineage computations into the PostgreSQL system via an extension (ProvSQL) and extensive experiments exhibit useful results in terms of accuracy against exact, semiring-based, justifications, especially for the column-based (CV) method which exhibits high precision and high per-level recall. In the experiments, we focus on tuples with \textit{multiple generations} of tuples in their lifelong lineage and analyze them in terms of direct and distant lineage.
Submission history
From: Michael Leybovich [view email][v1] Mon, 13 Sep 2021 21:44:29 UTC (120 KB)
[v2] Sun, 3 Oct 2021 10:53:54 UTC (179 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.