Computer Science > Machine Learning
[Submitted on 13 Sep 2021]
Title:A Practical Adversarial Attack on Contingency Detection of Smart Energy Systems
View PDFAbstract:Due to the advances in computing and sensing, deep learning (DL) has widely been applied in smart energy systems (SESs). These DL-based solutions have proved their potentials in improving the effectiveness and adaptiveness of the control systems. However, in recent years, increasing evidence shows that DL techniques can be manipulated by adversarial attacks with carefully-crafted perturbations. Adversarial attacks have been studied in computer vision and natural language processing. However, there is very limited work focusing on the adversarial attack deployment and mitigation in energy systems. In this regard, to better prepare the SESs against potential adversarial attacks, we propose an innovative adversarial attack model that can practically compromise dynamical controls of energy system. We also optimize the deployment of the proposed adversarial attack model by employing deep reinforcement learning (RL) techniques. In this paper, we present our first-stage work in this direction. In simulation section, we evaluate the performance of our proposed adversarial attack model using standard IEEE 9-bus system.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.