Computer Science > Machine Learning
[Submitted on 14 Sep 2021 (v1), last revised 9 Jun 2022 (this version, v2)]
Title:Robust Inverse Framework using Knowledge-guided Self-Supervised Learning: An application to Hydrology
View PDFAbstract:Machine Learning is beginning to provide state-of-the-art performance in a range of environmental applications such as streamflow prediction in a hydrologic basin. However, building accurate broad-scale models for streamflow remains challenging in practice due to the variability in the dominant hydrologic processes, which are best captured by sets of process-related basin characteristics. Existing basin characteristics suffer from noise and uncertainty, among many other things, which adversely impact model performance. To tackle the above challenges, in this paper, we propose a novel Knowledge-guided Self-Supervised Learning (KGSSL) inverse framework to extract system characteristics from driver and response data. This first-of-its-kind framework achieves robust performance even when characteristics are corrupted. We show that KGSSL achieves state-of-the-art results for streamflow modeling for CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) which is a widely used hydrology benchmark dataset. Specifically, KGSSL outperforms other methods by up to 16 \% in reconstructing characteristics. Furthermore, we show that KGSSL is relatively more robust to distortion than baseline methods, and outperforms the baseline model by 35\% when plugging in KGSSL inferred characteristics.
Submission history
From: Rahul Ghosh [view email][v1] Tue, 14 Sep 2021 04:38:23 UTC (1,723 KB)
[v2] Thu, 9 Jun 2022 03:41:49 UTC (2,544 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.