Computer Science > Machine Learning
[Submitted on 14 Sep 2021]
Title:Complexity-aware Adaptive Training and Inference for Edge-Cloud Distributed AI Systems
View PDFAbstract:The ubiquitous use of IoT and machine learning applications is creating large amounts of data that require accurate and real-time processing. Although edge-based smart data processing can be enabled by deploying pretrained models, the energy and memory constraints of edge devices necessitate distributed deep learning between the edge and the cloud for complex data. In this paper, we propose a distributed AI system to exploit both the edge and the cloud for training and inference. We propose a new architecture, MEANet, with a main block, an extension block, and an adaptive block for the edge. The inference process can terminate at either the main block, the extension block, or the cloud. The MEANet is trained to categorize inputs into easy/hard/complex classes. The main block identifies instances of easy/hard classes and classifies easy classes with high confidence. Only data with high probabilities of belonging to hard classes would be sent to the extension block for prediction. Further, only if the neural network at the edge shows low confidence in the prediction, the instance is considered complex and sent to the cloud for further processing. The training technique lends to the majority of inference on edge devices while going to the cloud only for a small set of complex jobs, as determined by the edge. The performance of the proposed system is evaluated via extensive experiments using modified models of ResNets and MobileNetV2 on CIFAR-100 and ImageNet datasets. The results show that the proposed distributed model has improved accuracy and energy consumption, indicating its capacity to adapt.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.