Computer Science > Sound
[Submitted on 14 Sep 2021 (v1), last revised 12 Jul 2022 (this version, v2)]
Title:Structure-Enhanced Pop Music Generation via Harmony-Aware Learning
View PDFAbstract:Pop music generation has always been an attractive topic for both musicians and scientists for a long time. However, automatically composing pop music with a satisfactory structure is still a challenging issue. In this paper, we propose to leverage harmony-aware learning for structure-enhanced pop music generation. On the one hand, one of the participants of harmony, chord, represents the harmonic set of multiple notes, which is integrated closely with the spatial structure of music, the texture. On the other hand, the other participant of harmony, chord progression, usually accompanies the development of the music, which promotes the temporal structure of music, the form. Moreover, when chords evolve into chord progression, the texture and form can be bridged by the harmony naturally, which contributes to the joint learning of the two structures. Furthermore, we propose the Harmony-Aware Hierarchical Music Transformer (HAT), which can exploit the structure adaptively from the music, and make the musical tokens interact hierarchically to enhance the structure in multi-level musical elements. Experimental results reveal that compared to the existing methods, HAT owns a much better understanding of the structure and it can also improve the quality of generated music, especially in the form and texture.
Submission history
From: Xueyao Zhang [view email][v1] Tue, 14 Sep 2021 05:04:13 UTC (3,154 KB)
[v2] Tue, 12 Jul 2022 10:11:04 UTC (4,265 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.