Computer Science > Information Theory
[Submitted on 14 Sep 2021]
Title:New Extremal Binary Self-Dual Codes of Length 72 from $M_6(\mathbb{F}_2)G$ - Group Matrix Rings by a Hybrid Search Technique Based on a Neighbourhood-Virus Optimisation Algorithm
View PDFAbstract:In this paper, a new search technique based on the virus optimisation algorithm is proposed for calculating the neighbours of binary self-dual codes. The aim of this new technique is to calculate neighbours of self-dual codes without reducing the search field in the search process (this is a known in the literature approach due to the computational time constraint) but still obtaining results in a reasonable time (significantly faster when compared to the standard linear computational search). We employ this new search algorithm to the well-known neighbour method and its extension, the $k^{th}$-range neighbours and search for binary $[72,36,12]$ self-dual codes. In particular, we present six generator matrices of the form $[I_{36} \ | \ \tau_6(v)],$ where $I_{36}$ is the $36 \times 36$ identity matrix, $v$ is an element in the group matrix ring $M_6(\mathbb{F}_2)G$ and $G$ is a finite group of order 6, which we then employ to the proposed algorithm and search for binary $[72,36,12]$ self-dual codes directly over the finite field $\mathbb{F}_2$. We construct 1471 new Type I binary $[72, 36, 12]$ self-dual codes with the rare parameters $\gamma=11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32$ in their weight enumerators.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.