Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Sep 2021 (v1), last revised 21 Jul 2022 (this version, v3)]
Title:Identifying partial mouse brain microscopy images from Allen reference atlas using a contrastively learned semantic space
View PDFAbstract:Precise identification of mouse brain microscopy images is a crucial first step when anatomical structures in the mouse brain are to be registered to a reference atlas. Practitioners usually rely on manual comparison of images or tools that assume the presence of complete images. This work explores Siamese Networks as the method for finding corresponding 2D reference atlas plates for given partial 2D mouse brain images. Siamese networks are a class of convolutional neural networks (CNNs) that use weight-shared paths to obtain low dimensional embeddings of pairs of input images. The correspondence between the partial mouse brain image and reference atlas plate is determined based on the distance between low dimensional embeddings of brain slices and atlas plates that are obtained from Siamese networks using contrastive learning. Experiments showed that Siamese CNNs can precisely identify brain slices using the Allen mouse brain atlas when training and testing images come from the same source. They achieved TOP-1 and TOP-5 accuracy of 25% and 100%, respectively, taking only 7.2 seconds to identify 29 images.
Submission history
From: Raghavendra Selvan [view email][v1] Tue, 14 Sep 2021 13:11:34 UTC (7,233 KB)
[v2] Wed, 15 Sep 2021 09:13:35 UTC (7,233 KB)
[v3] Thu, 21 Jul 2022 07:53:58 UTC (4,926 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.