Computer Science > Information Theory
[Submitted on 15 Sep 2021]
Title:Coalition Game based User Association for mmWave Mobile Relay Systems in Rail Traffic Scenarios
View PDFAbstract:Rail transportation, especially, high-speed rails (HSR), is an important infrastructure for the development of national economy and the promotion of passenger experience. Due to the large bandwidth, millimeter wave (mmWave) communication is regarded as a promising technology to meet the demand of high data rates. However, since mmWave communication has the characteristic of high attenuation, mobile relay (MR) is considered in this paper. Also, full-duplex (FD) communications have been proposed to improve the spectral efficiency. However, because of the high speed, as well as the problem of penetration loss, passengers on the train have a poor quality of service. Consequently, an effective user association scheme for HSR in mmWave band is necessary. In this paper, we investigate the user association optimization problem in mmWave mobilerelay systems where the MRs operate in the FD mode. To maximize the system capacity, we propose a cooperative user association approach based on coalition formation game, and develop a coalition formation algorithm to solve the challenging NP-hard problem. We also prove the convergence and Nashstable property of the proposed algorithm. Extensive simulations are done to show the system performance of the proposed scheme under various network settings. It is demonstrated that the proposed distributed low complexity scheme achieves a nearoptimal performance and outperforms two baseline schemes in terms of average system throughput.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.