Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Sep 2021 (v1), last revised 21 Oct 2021 (this version, v2)]
Title:F-CAM: Full Resolution Class Activation Maps via Guided Parametric Upscaling
View PDFAbstract:Class Activation Mapping (CAM) methods have recently gained much attention for weakly-supervised object localization (WSOL) tasks. They allow for CNN visualization and interpretation without training on fully annotated image datasets. CAM methods are typically integrated within off-the-shelf CNN backbones, such as ResNet50. Due to convolution and pooling operations, these backbones yield low resolution CAMs with a down-scaling factor of up to 32, contributing to inaccurate localizations. Interpolation is required to restore full size CAMs, yet it does not consider the statistical properties of objects, such as color and texture, leading to activations with inconsistent boundaries, and inaccurate localizations. As an alternative, we introduce a generic method for parametric upscaling of CAMs that allows constructing accurate full resolution CAMs (F-CAMs). In particular, we propose a trainable decoding architecture that can be connected to any CNN classifier to produce highly accurate CAM localizations. Given an original low resolution CAM, foreground and background pixels are randomly sampled to fine-tune the decoder. Additional priors such as image statistics and size constraints are also considered to expand and refine object boundaries. Extensive experiments, over three CNN backbones and six WSOL baselines on the CUB-200-2011 and OpenImages datasets, indicate that our F-CAM method yields a significant improvement in CAM localization accuracy. F-CAM performance is competitive with state-of-art WSOL methods, yet it requires fewer computations during inference.
Submission history
From: Soufiane Belharbi [view email][v1] Wed, 15 Sep 2021 04:45:20 UTC (87,508 KB)
[v2] Thu, 21 Oct 2021 02:37:53 UTC (90,496 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.