Physics > Instrumentation and Detectors
[Submitted on 11 Sep 2021 (v1), last revised 16 Sep 2021 (this version, v2)]
Title:Photon detection probability prediction using one-dimensional generative neural network
View PDFAbstract:Photon detection is important for liquid argon detectors for direct dark matter searches or neutrino property measurements. Precise simulation of photon transport is widely used to understand the probability of photon detection in liquid argon detectors. Traditional photon transport simulation, which tracks every photon using theGeant4simulation toolkit, is a major computational challenge for kilo-tonne-scale liquid argon detectors and GeV-level energy depositions. In this work, we propose a one-dimensional generative model which efficiently generates features using an OuterProduct-layer. This model bypasses photon transport simulation and predicts the number of photons detected by particular photon detectors at the same level of detail as theGeant4simulation. The application to simulating photon detection systems in kilo-tonne-scale liquid argon detectors demonstrates this novel generative model is able to reproduceGeant4simulation with good accuracy and 20 to 50 times faster. This generative model can be used to quickly predict photon detection probability in huge liquid argon detectors like ProtoDUNE or DUNE.
Submission history
From: Wei Mu [view email][v1] Sat, 11 Sep 2021 01:43:12 UTC (596 KB)
[v2] Thu, 16 Sep 2021 19:04:47 UTC (384 KB)
Current browse context:
physics.ins-det
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.