Quantum Physics
[Submitted on 15 Sep 2021]
Title:Fermion Sampling Made More Efficient
View PDFAbstract:Fermion sampling is to generate probability distribution of a many-body Slater-determinant wavefunction, which is termed "determinantal point process" in statistical analysis. For its inherently-embedded Pauli exclusion principle, its application reaches beyond simulating fermionic quantum many-body physics to constructing machine learning models for diversified datasets. Here we propose a fermion sampling algorithm, which has a polynomial time-complexity -- quadratic in the fermion number and linear in the system size. This algorithm is about 100% more efficient in computation time than the best known algorithms. In sampling the corresponding marginal distribution, our algorithm has a more drastic improvement, achieving a scaling advantage. We demonstrate its power on several test applications, including sampling fermions in a many-body system and a machine learning task of text summarization, and confirm its improved computation efficiency over other methods by counting floating-point operations.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.