Statistics > Machine Learning
[Submitted on 15 Sep 2021 (v1), last revised 16 Sep 2021 (this version, v2)]
Title:How to use KL-divergence to construct conjugate priors, with well-defined non-informative limits, for the multivariate Gaussian
View PDFAbstract:The Wishart distribution is the standard conjugate prior for the precision of the multivariate Gaussian likelihood, when the mean is known -- while the normal-Wishart can be used when the mean is also unknown. It is however not so obvious how to assign values to the hyperparameters of these distributions. In particular, when forming non-informative limits of these distributions, the shape (or degrees of freedom) parameter of the Wishart must be handled with care. The intuitive solution of directly interpreting the shape as a pseudocount and letting it go to zero, as proposed by some authors, violates the restrictions on the shape parameter. We show how to use the scaled KL-divergence between multivariate Gaussians as an energy function to construct Wishart and normal-Wishart conjugate priors. When used as informative priors, the salient feature of these distributions is the mode, while the KL scaling factor serves as the pseudocount. The scale factor can be taken down to the limit at zero, to form non-informative priors that do not violate the restrictions on the Wishart shape parameter. This limit is non-informative in the sense that the posterior mode is identical to the maximum likelihood estimate of the parameters of the Gaussian.
Submission history
From: Niko Brümmer [view email][v1] Wed, 15 Sep 2021 15:45:32 UTC (22 KB)
[v2] Thu, 16 Sep 2021 10:21:48 UTC (22 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.