Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Sep 2021 (v1), last revised 22 Nov 2021 (this version, v2)]
Title:Deep Bregman Divergence for Contrastive Learning of Visual Representations
View PDFAbstract:Deep Bregman divergence measures divergence of data points using neural networks which is beyond Euclidean distance and capable of capturing divergence over distributions. In this paper, we propose deep Bregman divergences for contrastive learning of visual representation where we aim to enhance contrastive loss used in self-supervised learning by training additional networks based on functional Bregman divergence. In contrast to the conventional contrastive learning methods which are solely based on divergences between single points, our framework can capture the divergence between distributions which improves the quality of learned representation. We show the combination of conventional contrastive loss and our proposed divergence loss outperforms baseline and most of the previous methods for self-supervised and semi-supervised learning on multiple classifications and object detection tasks and datasets. Moreover, the learned representations generalize well when transferred to the other datasets and tasks. The source code and our models are available in supplementary and will be released with paper.
Submission history
From: Shekoofeh Azizi [view email][v1] Wed, 15 Sep 2021 17:44:40 UTC (2,409 KB)
[v2] Mon, 22 Nov 2021 23:22:00 UTC (3,558 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.