Quantum Physics
[Submitted on 15 Sep 2021]
Title:Short Quantum Circuits in Reinforcement Learning Policies for the Vehicle Routing Problem
View PDFAbstract:Quantum computing and machine learning have potential for symbiosis. However, in addition to the hardware limitations from current devices, there are still basic issues that must be addressed before quantum circuits can usefully incorporate with current machine learning tasks. We report a new strategy for such an integration in the context of attention models used for reinforcement learning. Agents that implement attention mechanisms have successfully been applied to certain cases of combinatorial routing problems by first encoding nodes on a graph and then sequentially decoding nodes until a route is selected. We demonstrate that simple quantum circuits can used in place of classical attention head layers while maintaining performance. Our method modifies the networks used in [1] by replacing key and query vectors for every node with quantum states that are entangled before being measured. The resulting hybrid classical-quantum agent is tested in the context of vehicle routing problems where its performance is competitive with the original classical approach. We regard our model as a prototype that can be scaled up and as an avenue for further study on the role of quantum computing in reinforcement learning.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.