Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Sep 2021 (v1), last revised 27 Jan 2022 (this version, v2)]
Title:Learning to Aggregate and Refine Noisy Labels for Visual Sentiment Analysis
View PDFAbstract:Visual sentiment analysis has received increasing attention in recent years. However, the dataset's quality is a concern because the sentiment labels are crowd-sourcing, subjective, and prone to mistakes, and poses a severe threat to the data-driven models, especially the deep neural networks. The deep models would generalize poorly on the testing cases when trained to over-fit the training samples with noisy sentiment labels. Inspired by the recent progress on learning with noisy labels, we propose a robust learning method to perform robust visual sentiment analysis. Our method relies on external memory to aggregate and filters noisy labels during training. The memory is composed of the prototypes with corresponding labels, which can be updated online. The learned prototypes and their labels can be regarded as denoising features and labels for the local regions and can guide the training process to prevent the model from overfitting the noisy cases. We establish a benchmark for visual sentiment analysis with label noise using publicly available datasets. The experiment results of the proposed benchmark settings comprehensively show the effectiveness of our method.
Submission history
From: Wei Zhu [view email][v1] Wed, 15 Sep 2021 18:18:28 UTC (2,457 KB)
[v2] Thu, 27 Jan 2022 03:27:16 UTC (7,626 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.