Mathematical Physics
[Submitted on 15 Sep 2021 (v1), last revised 25 Jan 2022 (this version, v3)]
Title:Recurrence relations for off-shell Bethe vectors in trigonometric integrable models
View PDFAbstract:The zero modes method is applied in order to get action of the monodromy matrix entries onto off-shell Bethe vectors in quantum integrable models associated with $U_q(\mathfrak{gl}_N)$-invariant $R$-matrices. The action formulas allow to get recurrence relations for off-shell Bethe vectors and for highest coefficients of the Bethe vectors scalar product.
Submission history
From: Andrii Liashyk [view email][v1] Wed, 15 Sep 2021 18:42:02 UTC (21 KB)
[v2] Mon, 20 Sep 2021 11:23:33 UTC (21 KB)
[v3] Tue, 25 Jan 2022 09:14:59 UTC (21 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.