Computer Science > Computation and Language
[Submitted on 15 Sep 2021]
Title:On the Complementarity of Data Selection and Fine Tuning for Domain Adaptation
View PDFAbstract:Domain adaptation of neural networks commonly relies on three training phases: pretraining, selected data training and then fine tuning. Data selection improves target domain generalization by training further on pretraining data identified by relying on a small sample of target domain data. This work examines the benefit of data selection for language modeling and machine translation. Our experiments assess the complementarity of selection with fine tuning and result in practical recommendations: (i) selected data must be similar to the fine-tuning domain but not so much as to erode the complementary effect of fine-tuning; (ii) there is a trade-off between selecting little data for fast but limited progress or much data for slow but long lasting progress; (iii) data selection can be applied early during pretraining, with performance gains comparable to long pretraining session; (iv) data selection from domain classifiers is often more effective than the popular contrastive data selection method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.