Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 16 Sep 2021 (v1), last revised 7 Jun 2022 (this version, v2)]
Title:DeepMTS: Deep Multi-task Learning for Survival Prediction in Patients with Advanced Nasopharyngeal Carcinoma using Pretreatment PET/CT
View PDFAbstract:Nasopharyngeal Carcinoma (NPC) is a malignant epithelial cancer arising from the nasopharynx. Survival prediction is a major concern for NPC patients, as it provides early prognostic information to plan treatments. Recently, deep survival models based on deep learning have demonstrated the potential to outperform traditional radiomics-based survival prediction models. Deep survival models usually use image patches covering the whole target regions (e.g., nasopharynx for NPC) or containing only segmented tumor regions as the input. However, the models using the whole target regions will also include non-relevant background information, while the models using segmented tumor regions will disregard potentially prognostic information existing out of primary tumors (e.g., local lymph node metastasis and adjacent tissue invasion). In this study, we propose a 3D end-to-end Deep Multi-Task Survival model (DeepMTS) for joint survival prediction and tumor segmentation in advanced NPC from pretreatment PET/CT. Our novelty is the introduction of a hard-sharing segmentation backbone to guide the extraction of local features related to the primary tumors, which reduces the interference from non-relevant background information. In addition, we also introduce a cascaded survival network to capture the prognostic information existing out of primary tumors and further leverage the global tumor information (e.g., tumor size, shape, and locations) derived from the segmentation backbone. Our experiments with two clinical datasets demonstrate that our DeepMTS can consistently outperform traditional radiomics-based survival prediction models and existing deep survival models.
Submission history
From: Mingyuan Meng [view email][v1] Thu, 16 Sep 2021 04:12:59 UTC (1,095 KB)
[v2] Tue, 7 Jun 2022 13:31:11 UTC (732 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.