Computer Science > Robotics
[Submitted on 16 Sep 2021 (v1), last revised 30 May 2022 (this version, v3)]
Title:Deep Visual Navigation under Partial Observability
View PDFAbstract:How can a robot navigate successfully in rich and diverse environments, indoors or outdoors, along office corridors or trails on the grassland, on the flat ground or the staircase? To this end, this work aims to address three challenges: (i) complex visual observations, (ii) partial observability of local visual sensing, and (iii) multimodal robot behaviors conditioned on both the local environment and the global navigation objective. We propose to train a neural network (NN) controller for local navigation via imitation learning. To tackle complex visual observations, we extract multi-scale spatial representations through CNNs. To tackle partial observability, we aggregate multi-scale spatial information over time and encode it in LSTMs. To learn multimodal behaviors, we use a separate memory module for each behavior mode. Importantly, we integrate the multiple neural network modules into a unified controller that achieves robust performance for visual navigation in complex, partially observable environments. We implemented the controller on the quadrupedal Spot robot and evaluated it on three challenging tasks: adversarial pedestrian avoidance, blind-spot obstacle avoidance, and elevator riding. The experiments show that the proposed NN architecture significantly improves navigation performance.
Submission history
From: Bo Ai [view email][v1] Thu, 16 Sep 2021 06:53:57 UTC (6,722 KB)
[v2] Fri, 4 Mar 2022 11:45:55 UTC (9,912 KB)
[v3] Mon, 30 May 2022 20:36:40 UTC (9,912 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.