Statistics > Machine Learning
[Submitted on 16 Sep 2021 (v1), last revised 6 Oct 2021 (this version, v2)]
Title:Directed degree corrected mixed membership model and estimating community memberships in directed networks
View PDFAbstract:This paper considers the problem of modeling and estimating community memberships of nodes in a directed network where every row (column) node is associated with a vector determining its membership in each row (column) community. To model such directed network, we propose directed degree corrected mixed membership (DiDCMM) model by considering degree heterogeneity. DiDCMM is identifiable under popular conditions for mixed membership network when considering degree heterogeneity. Based on the cone structure inherent in the normalized version of the left singular vectors and the simplex structure inherent in the right singular vectors of the population adjacency matrix, we build an efficient algorithm called DiMSC to infer the community membership vectors for both row nodes and column nodes. By taking the advantage of DiMSC's equivalence algorithm which returns same estimations as DiMSC and the recent development on row-wise singular vector deviation, we show that the proposed algorithm is asymptotically consistent under mild conditions by providing error bounds for the inferred membership vectors of each row node and each column node under DiDCMM. The theory is supplemented by a simulation study.
Submission history
From: Huan Qing [view email][v1] Thu, 16 Sep 2021 09:35:16 UTC (99 KB)
[v2] Wed, 6 Oct 2021 04:18:28 UTC (62 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.