Computer Science > Human-Computer Interaction
[Submitted on 16 Sep 2021]
Title:Studying Up Machine Learning Data: Why Talk About Bias When We Mean Power?
View PDFAbstract:Research in machine learning (ML) has primarily argued that models trained on incomplete or biased datasets can lead to discriminatory outputs. In this commentary, we propose moving the research focus beyond bias-oriented framings by adopting a power-aware perspective to "study up" ML datasets. This means accounting for historical inequities, labor conditions, and epistemological standpoints inscribed in data. We draw on HCI and CSCW work to support our argument, critically analyze previous research, and point at two co-existing lines of work within our community -- one bias-oriented, the other power-aware. This way, we highlight the need for dialogue and cooperation in three areas: data quality, data work, and data documentation. In the first area, we argue that reducing societal problems to "bias" misses the context-based nature of data. In the second one, we highlight the corporate forces and market imperatives involved in the labor of data workers that subsequently shape ML datasets. Finally, we propose expanding current transparency-oriented efforts in dataset documentation to reflect the social contexts of data design and production.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.