Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Sep 2021 (v1), last revised 25 Nov 2021 (this version, v2)]
Title:Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
View PDFAbstract:Although Deep Neural Networks (DNNs) achieve excellent performance on many real-world tasks, they are highly vulnerable to adversarial attacks. A leading defense against such attacks is adversarial training, a technique in which a DNN is trained to be robust to adversarial attacks by introducing adversarial noise to its input. This procedure is effective but must be done during the training phase. In this work, we propose Augmented Random Forest (ARF), a simple and easy-to-use strategy for robustifying an existing pretrained DNN without modifying its weights. For every image, we generate randomized test time augmentations by applying diverse color, blur, noise, and geometric transforms. Then we use the DNN's logits output to train a simple random forest to predict the real class label. Our method achieves state-of-the-art adversarial robustness on a diversity of white and black box attacks with minimal compromise on the natural images' classification. We test ARF also against numerous adaptive white-box attacks and it shows excellent results when combined with adversarial training. Code is available at this https URL.
Submission history
From: Gilad Cohen [view email][v1] Thu, 16 Sep 2021 19:16:00 UTC (1,510 KB)
[v2] Thu, 25 Nov 2021 17:12:14 UTC (7,052 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.