Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Sep 2021]
Title:Towards agricultural autonomy: crop row detection under varying field conditions using deep learning
View PDFAbstract:This paper presents a novel metric to evaluate the robustness of deep learning based semantic segmentation approaches for crop row detection under different field conditions encountered by a field robot. A dataset with ten main categories encountered under various field conditions was used for testing. The effect on these conditions on the angular accuracy of crop row detection was compared. A deep convolutional encoder decoder network is implemented to predict crop row masks using RGB input images. The predicted mask is then sent to a post processing algorithm to extract the crop rows. The deep learning model was found to be robust against shadows and growth stages of the crop while the performance was reduced under direct sunlight, increasing weed density, tramlines and discontinuities in crop rows when evaluated with the novel metric.
Submission history
From: Rajitha De Silva [view email][v1] Thu, 16 Sep 2021 23:12:08 UTC (8,441 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.