Computer Science > Sound
[Submitted on 18 Sep 2021]
Title:Hybrid Data Augmentation and Deep Attention-based Dilated Convolutional-Recurrent Neural Networks for Speech Emotion Recognition
View PDFAbstract:Speech emotion recognition (SER) has been one of the significant tasks in Human-Computer Interaction (HCI) applications. However, it is hard to choose the optimal features and deal with imbalance labeled data. In this article, we investigate hybrid data augmentation (HDA) methods to generate and balance data based on traditional and generative adversarial networks (GAN) methods. To evaluate the effectiveness of HDA methods, a deep learning framework namely (ADCRNN) is designed by integrating deep dilated convolutional-recurrent neural networks with an attention mechanism. Besides, we choose 3D log Mel-spectrogram (MelSpec) features as the inputs for the deep learning framework. Furthermore, we reconfigure a loss function by combining a softmax loss and a center loss to classify the emotions. For validating our proposed methods, we use the EmoDB dataset that consists of several emotions with imbalanced samples. Experimental results prove that the proposed methods achieve better accuracy than the state-of-the-art methods on the EmoDB with 87.12% and 88.47% for the traditional and GAN-based methods, respectively.
Submission history
From: Nhat Truong Pham [view email][v1] Sat, 18 Sep 2021 23:13:44 UTC (1,781 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.