Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Sep 2021]
Title:ComicGAN: Text-to-Comic Generative Adversarial Network
View PDFAbstract:Drawing and annotating comic illustrations is a complex and difficult process. No existing machine learning algorithms have been developed to create comic illustrations based on descriptions of illustrations, or the dialogue in comics. Moreover, it is not known if a generative adversarial network (GAN) can generate original comics that correspond to the dialogue and/or descriptions. GANs are successful in producing photo-realistic images, but this technology does not necessarily translate to generation of flawless comics. What is more, comic evaluation is a prominent challenge as common metrics such as Inception Score will not perform comparably, as they are designed to work on photos. In this paper: 1. We implement ComicGAN, a novel text-to-comic pipeline based on a text-to-image GAN that synthesizes comics according to text descriptions. 2. We describe an in-depth empirical study of the technical difficulties of comic generation using GAN's. ComicGAN has two novel features: (i) text description creation from labels via permutation and augmentation, and (ii) custom image encoding with Convolutional Neural Networks. We extensively evaluate the proposed ComicGAN in two scenarios, namely image generation from descriptions, and image generation from dialogue. Our results on 1000 Dilbert comic panels and 6000 descriptions show synthetic comic panels from text inputs resemble original Dilbert panels. Novel methods for text description creation and custom image encoding brought improvements to Frechet Inception Distance, detail, and overall image quality over baseline algorithms. Generating illustrations from descriptions provided clear comics including characters and colours that were specified in the descriptions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.