Mathematical Physics
[Submitted on 19 Sep 2021 (v1), last revised 9 Jan 2023 (this version, v2)]
Title:Locally-symplectic neural networks for learning volume-preserving dynamics
View PDFAbstract:We propose locally-symplectic neural networks LocSympNets for learning the flow of phase volume-preserving dynamics. The construction of LocSympNets stems from the theorem of the local Hamiltonian description of the divergence-free vector field and the splitting methods based on symplectic integrators. Symplectic gradient modules of the recently proposed symplecticity-preserving neural networks SympNets are used to construct invertible locally-symplectic modules. To further preserve properties of the flow of a dynamical system LocSympNets are extended to symmetric locally-symplectic neural networks SymLocSympNets, such that the inverse of SymLocSympNets is equal to the feed-forward propagation of SymLocSympNets with the negative time step, which is a general property of the flow of a dynamical system. LocSympNets and SymLocSympNets are studied numerically considering learning linear and nonlinear volume-preserving dynamics. We demonstrate learning of linear traveling wave solutions to the semi-discretized advection equation, periodic trajectories of the Euler equations of the motion of a free rigid body, and quasi-periodic solutions of the charged particle motion in an electromagnetic field. LocSympNets and SymLocSympNets can learn linear and nonlinear dynamics to a high degree of accuracy even when random noise is added to the training data. When learning a single trajectory of the rigid body dynamics locally-symplectic neural networks can learn both quadratic invariants of the system with absolute relative errors below 1%. In addition, SymLocSympNets produce qualitatively good long-time predictions, when the learning of the whole system from randomly sampled data is considered. LocSympNets and SymLocSympNets can produce accurate short-time predictions of quasi-periodic solutions, which is illustrated in the example of the charged particle motion in an electromagnetic field.
Submission history
From: Jānis Bajārs [view email][v1] Sun, 19 Sep 2021 15:58:09 UTC (3,492 KB)
[v2] Mon, 9 Jan 2023 13:25:46 UTC (28,225 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.